
Vincent Claes 2009 Vincent Claes

Lab:

Implementing the Xilkernel on the Xilinx

Spartan 3E Starter Kit

Keywords: EDK, Xilinx Platform Studio, Microblaze, Xilinx

SPARTAN3E Starter Kit, Real-Time Operating System (RTOS),

pthreads,…

Vincent Claes 2009 Vincent Claes

Introduction
These labs are created by Vincent Claes. If you encounter

problems using this labs or want some advice/consultancy on

Embedded Systems, FPGA’s, LabVIEW and especially LabVIEW FPGA

you can always contact the author.

These labs are free to use however to show respect to the

author please email him when you use them with your contact

details (feedback is also welcome).

Contact Information:

Vincent Claes

claesvincent@gmail.com

http://www.linkedin.com/in/vincentclaes

Software Requirements:

 Xilinx EDK 10.1 SP3

 Xilinx EDK (SDK) 10.1 SP3

Hardware Requirements:

 Xilinx Spartan3E Starter kit:

http://www.xilinx.com/products/devkits/HW-SPAR3E-SK-US-

G.htm

 User manual:

www.xilinx.com/support/documentation/boards_and_kits/ug23

0.pdf

Getting Started
When you want to use this labs you have to setup your board.

This labs are written for the Xilinx SPARTAN3E Starter Kit so

it is quite interesting to read the user manual of the board.

Be sure to plug in the USB cable, plug in the Power cord and

Switch the board on before starting the lab.

Vincent Claes 2009 Vincent Claes

Step 1: Create a Base System
The first step is creating a Base System for the Spartan3E

starter board. For more information if you need please visit

the Xilinx website.

Start Xilinx Platform Studio (EDK) 10.1

When the “Create new or open existing project” window appears

select “Base System Builder wizard” and click the OK button.

Create a new *.xmp file in a directory on your HDD. Remember

to not use spaces in your filenames or directory name.

Check the Option “I would like to create a new design” in the

next window and click on the “Next” button.

Vincent Claes 2009 Vincent Claes

This lab is written for the Spartan 3E Starter board Revision

D so we have to select that board and click on the “Next”

button.

On this Spartan 3E starter board there is no PowerPC core

implemented in the FPGA so we can only add the Xilinx

Microblaze processor as the processor that will be included in

the embedded design. Select “Microblaze” and click the “Next”

button.

Vincent Claes 2009 Vincent Claes

Leave all the settings for the microblaze processor like they

are proposed to you and click next.

Vincent Claes 2009 Vincent Claes

Now it is time to Configure all the IO Interfaces that are

needed in this project. I will add all the existing IO

interfaces to have a platform that can be used during more

labs. So look at the next screens for the configuration of the

IO Interfaces.

Vincent Claes 2009 Vincent Claes

For the implementation of the Xilkernel we are in need of a

timer. This is added as an “Internal Peripheral” during the

next step of the “Base System Builder”. So click the “Add

Peripheral” button and then select the XPS_TIMER from the

drop-down menu. Click the “OK” button.

Make sure your XPS_TIMER has the same settings as below, so

check the box “Use interrupt”.

Vincent Claes 2009 Vincent Claes

The next 3 steps are standard “Base System Builder” steps.

Click the “Next button” 3 times. In this steps you tell which

IO interfaces to use as STDIN (Standard input device) and

STDOUT (Standard Output device). Also you set from which

memory the system will boot (we will later a bootloop program

in the blockram and execute our instruction from SDRAM).

Vincent Claes 2009 Vincent Claes

Vincent Claes 2009 Vincent Claes

The next window is a summary of the system you have created.

You can see all the cores you have implemented in your SoC

(System-On-Chip). You can also have a look at the memory map

of your system. Click the “Generate” button to have your

system generated. After this a new screen appears; click the

“Finish” button.

Congratulations, you just have designed an Xilinx Base system

that can run an Real-Time Operating System (RTOS) called

Xilkernel. You can have a look at your block diagram in EDK.

Vincent Claes 2009 Vincent Claes

Step 2: Software Platform

Settings
Now that you have created your hardware project you only have

to generate the bitstream to be able to download later this

hardware project. In EDK click the “Hardware” menu and then

select “Generate Bitstream”.

Generating the bitstream will take some time so I suggest you

go to the coffee machine and have a cup of coffee and return

after some time.

Vincent Claes 2009 Vincent Claes

When you come back and see in the “Output” window of EDK the

following message:

“Saving bit stream in “system.bit”

Bitstream generation is complete.

Done!

You are lucky and can go further in the development. Select

the “Software”  “Launch Plaform Studio SDK”.

When you have started Xilinx Platform Studio SDK a wizard is

launched. The first step is selecting the “Create a New SDK C

Application Project” and click the “Next” button.

Put in the “Project Name” box a name that you wish to give to

your project. Be sure you select the correct microblaze

instance for your project, normally there is only one if you

are working in a design with only one processor core. Leave

all the other options like they are presented to you and click

on the “Next” button.

Vincent Claes 2009 Vincent Claes

Vincent Claes 2009 Vincent Claes

Finish this “New project wizard” by clicking the “Next” button

on the next screen that appears and then checking the box for

“microblaze_0_sw_platform” to use this as a referenced C/C++

project. Now press the “Finish” button.

Now you have generated a “New SDK project”. The first thing we

are going to do is setting all the “Software Platform

Settings” to the values we want. Remember we want to get a

xilkernel platform on the Xilinx Spartan 3E Starter board. So

for now select “Xilinx Tools” and “Software Platform Settings”

from the top-down menu.

Vincent Claes 2009 Vincent Claes

In the “Software Platform Settings” we have to configure the

software part of our platform.

On the second part of the window you must select “xilkernel”.

When we have developed our application and would like to use

the features of the xilkernel we have to add “-lxilkernel” as

an extra_compiler_flag in the “Software Platform Settings”.

Vincent Claes 2009 Vincent Claes

After this you select the “OS and libraries” option from the

left part of the “Software Platform Settings” window. Here we

have to set some configuration parameters of the OS (xilkernel

v4.00.a).

1. Check that you put in the stdin and stdout

configuration parameters “RS232_DTE” as current value

if you want to use this serial port as your standard

input and output parameters.

2. Check that you select xps_intc_0 as the sysintc_spec.

3. For the systmr_spec set the systmr_dev to

xps_timer_1.

Vincent Claes 2009 Vincent Claes

4. Go to the config_pthread_support parameter and select
the static_pthread_table option, you do this by

clicking on the “Current Value” of this option.

Be sure to put in this table the value

“test_start_func” as pthread_start_func and put 1 in

the column for the pthread_prio value of it.

5. Be sure that the sched_type option which you can find
under config_sched is set to use Round Robin

(SCHED_RR) otherwise you will get some errors while

compiling your code.

Vincent Claes 2009 Vincent Claes

6. The xilkernel can deliver you some software timers.
But if you want to use this option of the xilkernel

your have to make the max_tmrs option to a value that

is greater than 1. Before you can do this you have to

put the config_time option to the value “true”. I

have used the value 2 in my example project.

7. In the example software application we will kill a
pthread on runtime. If you want to be able to do this

you have to put the value of enhanced_features to

true and set config_kill and config_yield also to

true.

Vincent Claes 2009 Vincent Claes

After this you can close this “Software Platform Settings”

window by clicking on the “OK” button. After this you will be

back in the Xilinx Platform Studio SDK.

We are going to manipulate the “Linker Script” used by our

project in such a way that we run our software directly from

DDR-SDRAM. We do this by clicking on the software project you

have generated with the right mouse button and then selecting

“Generate Linker Script”.

After this a new window appears titled “Linker Script

Generator”. In this window you have to assign all the Code

Sections and Data Sections of the ELF file to

“DDR_SDRAM_C_MPMC_BASEADDR”.

Vincent Claes 2009 Vincent Claes

Click on the “Generate” button.

Vincent Claes 2009 Vincent Claes

After this we have to tell the gcc linker to link against the

xilkernel library. We do this by clicking with the “right”

mouse button on your project and selecting “properties”.

Go to C/C++ Build and select the “Tool Settings” tab.

Vincent Claes 2009 Vincent Claes

Click on the “Add” icon.

A new messagebox appears, you have to write xilkernel as

library in this box and click the “OK” button.

Now it is time to program your FPGA with the generated

bitstream. Do this by clickin on the “Device Configuration”

menuitem and select “Program FPGA”. This will download the

.bit file to your Spartan3E FPGA.

Vincent Claes 2009 Vincent Claes

The “Program FPGA” selection will start up a new window where

you have to select the “BootLoop” ELF to be used in BRAM. This

will place a small boot program into the BRAM that point to

the start place in DDR-SDRAM where we will place our

application software. So click the “Save and Program” button.

Step 3: Write Software

Application

Now it is time to program our C-application that we would like

to debug on our HW platform. This C-application we use the

xilkernel as Real-Time Operating System (RTOS)

In your Xilinx Platform Studio SDK click on the “main.c” file

and remove all the code that is in the code window with the

code below (explanation of the code is as comment included):

// Development by Vincent Claes

// http://pwo.fpga.be

// http://www.xios.be

#include "xmk.h" // Xilinx Micro Kernel library

#include "pthread.h" // pthread library

#include "xparameters.h" // Platform parameters

#include "xgpio.h"

#include "xgpio_l.h"

//==

static pthread_t newthread1; // an identifier for creating a new pthread

Vincent Claes 2009 Vincent Claes

static pthread_attr_t thread1attr;

// an attribute identifier used for creating the new pthread

static struct sched_param newthreadsched;

// used for giving our new thread a priority level

static pid_t mainproc_pid;

// an identifier used for killing the lower priority process

XGpio GpioOutput;

/* The driver instance for GPIO Device configured as O/P */

void* launched_pthread(void *dummy)

{

 int counter=0x01;

 int Status;

 xil_printf("\r\n--- Killing test_start_func() ...\r\n");

// next code used to kill the other proc if scheduling

// is Round Robin (RR-based) instead of Priority based.

if (kill(mainproc_pid) != 0)

 {

 xil_printf("\r\n--- Error during kill operation...---\r\n");

 }

 Status = XGpio_Initialize(&GpioOutput,XPAR_LEDS_8BIT_BASEADDR);

 XGpio_SetDataDirection(&GpioOutput,1,0x0);

 while(1)

 {

 XGpio_DiscreteWrite(&GpioOutput,1,counter);

 xil_printf("\r\n%d",counter);

 sleep(5000); // This is why we need a software timer!

 counter++;

 }

}

void* test_start_func(void *dummy)

{

 int i=0,temp;

 xil_printf("--- In test_start_funct() ---");

 mainproc_pid = get_currentPID(); // parameter needed to kill this

//process in other thread

 while(1)

 {

 i++;

 if(i==25)

 // spawn the thread after some time

 {

 pthread_attr_init(&thread1attr);

 newthreadsched.sched_priority = 1;

 temp = pthread_create(&newthread1, &thread1attr,

(void*)launched_pthread, NULL);

// NULL: It's used if the thread function must take in an argument

 }

 }

}

int main (void) {

 xil_printf("-- Entering main() --\r\n");

Vincent Claes 2009 Vincent Claes

 //Wait for user input to start xilkernel...

 xilkernel_main();

 //We never reach this line...

 xil_printf("-- Exiting main() --\r\n");

 return 0;

}

Click now on the “save” icon; the software then will be

automatically compiled by the mb-gcc (microblaze port of the

gcc compiler) and linked.

Step 4: Debug Application

Now it’s time for the final step: debug the application from

DDR-SDRAM. Be sure you have connected your board correctly to

the computer and it is powered on. Also connect your serial

DTE port to a RS-232 port of your computer. Open a serial

connection from your computer to the Spartan 3E board; for

instance by use of “Hyperterminal” and use 9600 bps as baud

rate.

Click on “Debug on Hardware” this option you can find from the

menu-item “Run” and then selecting “Debug As”.

Vincent Claes 2009 Vincent Claes

The next screen will appear; the final step is clicking the

“Resume” button! (the debugger will always pause the

application on the first line of the main() function of your

application.

Enjoy.

Vincent Claes

XIOS Hogeschool Limburg

Department of Industrial Sciences and Technology

Universitaire Campus - Agoralaan – Gebouw H

B-3590 Diepenbeek

Belgium

vincent.claes@xios.be

tel.: +32 11 26 00 39

fax: +32 11 26 00 54

mobile: +32 478 35 38 49

	Lab:
	Implementing the Xilkernel on the Xilinx Spartan 3E Starter Kit
	Introduction
	Getting Started
	Step 1: Create a Base System
	Step 2: Software Platform Settings
	Step 3: Write Software Application
	Step 4: Debug Application

